muRata

# High Voltage Ceramic Capacitors DC10-40kV

# Radial Lead Type DHR Series (DC10-15kV)

# Features

- 1. Small size
- Excellent heat-proof, humidity-proof and highdielectric strength voltage.
- 3. Coated with flame-retardant epoxy resin.

## Applications

- 1. Color TV doublers and triplers
- 2. High voltage DC power supplies (PPCs, X-ray apparatus, air cleaner, lasers, etc.)
- 3. Tuning capacitor in focus circuit for display

### Marking

| Temp. Char.<br>Nominal body dia. |                               | ZM                                                                                                                                                                                                                               | В                       |  |  |
|----------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
|                                  | ø8mm                          | (101<br>10K                                                                                                                                                                                                                      | (101<br>10K             |  |  |
|                                  | ø9mm and 10mm                 | 221K<br>10K•                                                                                                                                                                                                                     | (221M)<br>10K           |  |  |
|                                  | ø11mm to 14mm                 | ZM<br>471K<br>10K                                                                                                                                                                                                                | B<br>471M<br>10K        |  |  |
| ø15mm to 18mm                    |                               | 102KZ<br>(M 10K<br>0050                                                                                                                                                                                                          | 102MB<br>(M 10K<br>0050 |  |  |
| Nominal body dia. ø8mm           |                               | Omitted                                                                                                                                                                                                                          | Omitted                 |  |  |
| Temperature                      | Nominal body dia. ø9 and 10mm | Marked with • (dot)                                                                                                                                                                                                              |                         |  |  |
| Characteristics                  | Nominal body dia. ø11 to 14mm | Marked with code.                                                                                                                                                                                                                | Marked with code        |  |  |
| Nominal body dia. ø15mm min.     |                               | Marked with Z.                                                                                                                                                                                                                   |                         |  |  |
| No                               | ominal Capacitance            | Under 100pF : Actual value, 100pF and over : Marked with 3 figures.                                                                                                                                                              |                         |  |  |
| Ca                               | pacitance Tolerance           | Marked with code, omitted for nominal body diameter ø8mm and under.                                                                                                                                                              |                         |  |  |
|                                  | Rated Voltage                 | Marked with code.                                                                                                                                                                                                                |                         |  |  |
| Manut                            | facturer's Identification     | Marked with $\textcircled{M}$ , omitted for nominal body diameter ø14mm and under.                                                                                                                                               |                         |  |  |
|                                  |                               | Abbreviation, omitted for nominal body diameter ø14mm and under.                                                                                                                                                                 |                         |  |  |
| N                                | Ianufactured Date             | (Ex.) $\underbrace{\begin{array}{c}0\\0\end{array}}_{(1)}\underbrace{\begin{array}{c}0\\0\end{array}}\underbrace{\begin{array}{c}0\\0\end{array}}_{(2)}\underbrace{\begin{array}{c}0\\0\end{array}}_{(2)}$ : Number in the month |                         |  |  |





# ZM Characteristics

1

| Part Number    | Rated Voltage<br>(kV) | Capacitance<br>(pF) | Body Dia. D<br>(mm) | Lead Spacing F<br>(mm) | Body Thickness T<br>(mm) | Lead Dia. ød<br>(mm) |
|----------------|-----------------------|---------------------|---------------------|------------------------|--------------------------|----------------------|
| DHR4E4A101K2BB | DC10                  | 100 +10, -10%       | 8.0                 | 9.5                    | 7.0                      | 0.65                 |
| DHR4E4A151K2BB | DC10                  | 150 +10, -10%       | 8.0                 | 9.5                    | 7.0                      | 0.65                 |
| DHR4E4A221K2BB | DC10                  | 220 +10, -10%       | 9.0                 | 9.5                    | 7.0                      | 0.65                 |
| DHR4E4A331K2BB | DC10                  | 330 +10,-10%        | 10.0                | 9.5                    | 7.0                      | 0.65                 |
| DHR4E4A471K2BB | DC10                  | 470 +10, -10%       | 12.0                | 9.5                    | 7.0                      | 0.65                 |
| DHR4E4A681K2BB | DC10                  | 680 +10, -10%       | 13.0                | 9.5                    | 7.0                      | 0.65                 |
| DHR4E4A102K2BB | DC10                  | 1000 +10, -10%      | 15.0                | 9.5                    | 7.0                      | 0.65                 |
| DHR4E4B101K2BB | DC12                  | 100 +10, -10%       | 8.0                 | 9.5                    | 7.3                      | 0.65                 |
| DHR4E4B151K2BB | DC12                  | 150 +10, -10%       | 9.0                 | 9.5                    | 7.3                      | 0.65                 |
| DHR4E4B221K2BB | DC12                  | 220 +10, -10%       | 9.0                 | 9.5                    | 7.3                      | 0.65                 |
| DHR4E4B331K2BB | DC12                  | 330 +10, -10%       | 11.0                | 9.5                    | 7.3                      | 0.65                 |
| DHR4E4B471K2BB | DC12                  | 470 +10, -10%       | 12.0                | 9.5                    | 7.3                      | 0.65                 |
| DHR4E4B681K2BB | DC12                  | 680 +10, -10%       | 14.0                | 9.5                    | 7.3                      | 0.65                 |
| DHR4E4B102K2BB | DC12                  | 1000 +10, -10%      | 16.0                | 9.5                    | 7.3                      | 0.65                 |
| DHR4E4C101K2BB | DC15                  | 100 +10, -10%       | 8.0                 | 9.5                    | 8.2                      | 0.65                 |
| DHR4E4C151K2BB | DC15                  | 150 +10, -10%       | 9.0                 | 9.5                    | 8.2                      | 0.65                 |
| DHR4E4C221K2BB | DC15                  | 220 +10, -10%       | 10.0                | 9.5                    | 8.2                      | 0.65                 |
| DHR4E4C331K2BB | DC15                  | 330 +10, -10%       | 12.0                | 9.5                    | 8.2                      | 0.65                 |
| DHR4E4C471K2BB | DC15                  | 470 +10, -10%       | 13.0                | 9.5                    | 8.2                      | 0.65                 |
| DHR4E4C681K2BB | DC15                  | 680 +10, -10%       | 15.0                | 9.5                    | 8.2                      | 0.65                 |
| DHR4E4C102K2FB | DC15                  | 1000 +10, -10%      | 18.0                | 12.7                   | 8.2                      | 0.8                  |

# **B** Characteristics

| Part Number    | Rated Voltage<br>(kV) | Capacitance<br>(pF) | Body Dia. D<br>(mm) | Lead Spacing F<br>(mm) | Body Thickness T<br>(mm) | Lead Dia. ød<br>(mm) |
|----------------|-----------------------|---------------------|---------------------|------------------------|--------------------------|----------------------|
| DHRB34A101M2BB | DC10                  | 100 +20, -20%       | 8.0                 | 9.5                    | 7.0                      | 0.65                 |
| DHRB34A151M2BB | DC10                  | 150 +20, -20%       | 8.0                 | 9.5                    | 7.0                      | 0.65                 |
| DHRB34A221M2BB | DC10                  | 220 +20, -20%       | 9.0                 | 9.5                    | 7.0                      | 0.65                 |
| DHRB34A331M2BB | DC10                  | 330 +20, -20%       | 10.0                | 9.5                    | 7.0                      | 0.65                 |
| DHRB34A471M2BB | DC10                  | 470 +20, -20%       | 12.0                | 9.5                    | 7.0                      | 0.65                 |
| DHRB34A681M2BB | DC10                  | 680 +20, -20%       | 13.0                | 9.5                    | 7.0                      | 0.65                 |
| DHRB34A102M2BB | DC10                  | 1000 +20, -20%      | 15.0                | 9.5                    | 7.0                      | 0.65                 |
| DHRB34B101M2BB | DC12                  | 100 +20, -20%       | 8.0                 | 9.5                    | 7.7                      | 0.65                 |
| DHRB34B151M2BB | DC12                  | 150 +20, -20%       | 9.0                 | 9.5                    | 7.5                      | 0.65                 |
| DHRB34B221M2BB | DC12                  | 220 +20, -20%       | 9.0                 | 9.5                    | 7.5                      | 0.65                 |
| DHRB34B331M2BB | DC12                  | 330 +20, -20%       | 11.0                | 9.5                    | 7.5                      | 0.65                 |
| DHRB34B471M2BB | DC12                  | 470 +20, -20%       | 12.0                | 9.5                    | 7.5                      | 0.65                 |
| DHRB34B681M2BB | DC12                  | 680 +20, -20%       | 14.0                | 9.5                    | 7.5                      | 0.65                 |
| DHRB34B102M2BB | DC12                  | 1000 +20, -20%      | 16.0                | 9.5                    | 7.5                      | 0.65                 |
| DHRB34C101M2BB | DC15                  | 100 +20, -20%       | 8.0                 | 9.5                    | 8.5                      | 0.65                 |
| DHRB34C151M2BB | DC15                  | 150 +20, -20%       | 9.0                 | 9.5                    | 8.2                      | 0.65                 |
| DHRB34C221M2BB | DC15                  | 220 +20, -20%       | 10.0                | 9.5                    | 8.2                      | 0.65                 |
| DHRB34C331M2BB | DC15                  | 330 +20, -20%       | 12.0                | 9.5                    | 8.2                      | 0.65                 |
| DHRB34C471M2BB | DC15                  | 470 +20, -20%       | 13.0                | 9.5                    | 8.2                      | 0.65                 |
| DHRB34C681M2BB | DC15                  | 680 +20, -20%       | 15.0                | 9.5                    | 8.2                      | 0.65                 |
| DHRB34C102M2FB | DC15                  | 1000 +20, -20%      | 18.0                | 12.7                   | 8.2                      | 0.8                  |



1

# **Specifications and Test Methods**

| No. | o. Item                                |                                                | Specifications Testing Method                                         |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|-----|----------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1   | Operating Temperature Range            |                                                | -25 to +100°C                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 2   | 2 Capacitance                          |                                                | Within the specified tolerance.                                       | The capacitance should be measured at 20°C with 1 $\pm$ 0.2kHz and AC 5V(r.m.s.) max.                                                                                                                                                                                                                                                            |  |  |  |
| 3   | 3 Dissipation Factor (D.F.)            |                                                | ZM         1.0% max.           B         2.5% max.                    | Same condition as capacitance.                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 4   | Insulation<br>Resistance (I.R.)        | Between<br>Lead Wires                          | 10000MΩ min.                                                          | The insulation resistance should be measured with DC1000V within 60±5 sec. of charging.                                                                                                                                                                                                                                                          |  |  |  |
| 5   | Between<br>Lead Wires                  |                                                | No failure.                                                           | The capacitor should not be damaged when DC voltage of 150% of the rated voltage is applied between the lead wires for 60±5 sec. in insulating liquid or gas. (Charge/Discharge current≦50mA)                                                                                                                                                    |  |  |  |
|     | Dielectric<br>Strength                 | Body Insulation                                | No failure.                                                           | The capacitor is placed in the container with<br>metal balls of diameter 1mm so that each<br>lead wire, shortcircuited, is kept<br>approximately 2mm off the metal balls as<br>shown in the figure at right, and DC voltage<br>of 3kV is applied for 10 sec. between<br>capacitor lead wires and metal balls.<br>(Charge/Discharge current≦50mA) |  |  |  |
| 6   | Temperature Characteristics            |                                                | Temp. Char.Temp. Coefficient or<br>Max. Cap. ChangeZM-4700±1000ppm/°C | The capacitance measurement should be made at each step<br>specified in table.<br>Capacitance change from the value of step 3 should not<br>exceed the limit specified.                                                                                                                                                                          |  |  |  |
|     |                                        |                                                | B±10%                                                                 | Step         1         2         3         4         5           Char.           20±2°C         85±2°C         20±2°C           B         20±2°C         -25±3°C         20±2°C         85±2°C         20±2°C                                                                                                                                    |  |  |  |
|     | Appearance                             |                                                | No marked defect.                                                     | The lead wires should be immersed into the melted solder of                                                                                                                                                                                                                                                                                      |  |  |  |
| 7   | Soldering Effect                       | Capacitance<br>Change                          | Within ±10%                                                           | 350±10 C up to about 1.5 to 2.0mm from the main body for<br>3.5±0.5 sec.<br>Post-treatment: Capacitor should be stored for 24±2 hrs. at                                                                                                                                                                                                          |  |  |  |
|     |                                        | Dielectric Strength<br>(Between<br>Lead Wires) | No failure.                                                           | *room condition.                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|     | Humidity<br>(Under<br>Steady<br>State) | Appearance                                     | No marked defect.                                                     | Set the capacitor for 240±8 hrs. at 40±2°C in 90 to 95% relative<br>humidity.<br>Post-treatment: Capacitor should be stored for 1 to 2 hrs. at<br>*room condition.                                                                                                                                                                               |  |  |  |
|     |                                        | Capacitance<br>Change                          | Within ±10%                                                           |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 8   |                                        | D.F.                                           | ZM         1.5% max.           B         4.0% max.                    |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     |                                        | I.R.                                           | 5000MΩ min.                                                           |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     |                                        | Dielectric Strength<br>(Between<br>Lead Wires) | No failure.                                                           |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     | Appearance                             | No marked defect.                              | Apply a DC voltage of 125% of the rated voltage for $1000^{+48}_{-0}$ |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     | Life                                   | Capacitance<br>Change                          | Within ±10%                                                           | hrs. in silicon oil at 85±2°C.                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 9   |                                        | D.F.                                           | ZM 1.5% max.<br>B 4.0% max.                                           | *room condition.<br>(Charge/Discharge current≦50mA)                                                                                                                                                                                                                                                                                              |  |  |  |
|     |                                        | I.R.                                           | 5000MΩ min.                                                           |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     | -                                      | Dielectric Strength<br>(Between<br>Lead Wires) | No failure                                                            |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     |                                        |                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

(Note) Tests for Dielectric Strength (between lead wires), Charge Discharge Test, Humidity, Temperature Cycle and Life should be performed with specimens having molded resin (MR1023C : made by Murata) extending over 3mm on all the surface.

 $^{\star}$  "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page.



# **Specifications and Test Methods**

#### $\Box$ Continued from the preceding page.

| No. | lo. Item                    |                                                | Specifications                                                                                                                | Testing Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-----|-----------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     |                             | Appearance                                     | No marked defect.                                                                                                             | Charge discharge test should be measured in the following test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|     | Charge<br>Discharge<br>Test | Capacitance<br>Change                          | Within ±10%                                                                                                                   | circuit and cycle.<br>Applied voltage : Rated voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|     |                             | D.F.                                           | ZM 1.5% max.<br>B 4.0% max.                                                                                                   | Cycle time : 20000 cycle<br>Post-treatment : Capacitor should be stored for 4 hrs. at *room                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                             | I.R.                                           | 5000MΩ min.                                                                                                                   | condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 10  |                             | Dielectric Strength<br>(Between<br>Lead Wires) | No failure.                                                                                                                   | $\begin{array}{c c} < Circuit> & < Cycle> \\ \hline R_1 & SW & Charge & Discharge \\ \hline & & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline & & & \\ \hline \end{array}$ |  |
|     | Temperature<br>Cycle        | Appearance                                     | No marked defect.                                                                                                             | Temperature cycle should be measured in the following test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|     |                             | Capacitance<br>Change                          | Within ±10%                                                                                                                   | Cycle time : 5 cycle<br>Post-treatment : Capacitor should be stored for 4 hrs. at *room<br>condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 11  |                             | D.F.                                           | ZM         1.5% max.           B         4.0% max.                                                                            | +100°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|     |                             | I.R.                                           | 5000MΩ min.                                                                                                                   | -30°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|     |                             | Dielectric Strength<br>(Between<br>Lead Wires) | No failure.                                                                                                                   | <u>, 30 , , 30 ,</u>   (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 12  | Strength<br>of Lead         | Pull                                           | Lead wire should not be cut off.                                                                                              | As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for $10\pm1$ sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|     |                             | Bending                                        | Capacitor should not be broken.                                                                                               | Each lead wire should be subjected to 5N of weight and bent $90^{\circ}$ at the point of egress, in one direciton, then returned to its original position and bent $90^{\circ}$ in the opposite direction at the rate of one bend in 2 to 3 sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 13  | 13 Solderability of Leads   |                                                | Lead wire should be soldered with uniform coating on the axial direction over $\frac{3}{4}$ of the circumferential direction. | The lead wire of a capacitor should be dipped into a 25% methanol solution of rosin and then into molten solder of $235\pm5^{\circ}$ C for $2\pm0.5$ sec. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

(Note) Tests for Dielectric Strength (between lead wires), Charge Discharge Test, Humidity, Temperature Cycle and Life should be performed with specimens having molded resin (MR1023C : made by Murata) extending over 3mm on all the surface.

\* "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa



6

1

# Typical Characteristics Data/Packaging

### Cap.-Temp. Char.



## Cap.-DC Bias Char.



# Packaging Styles



| Minimum Quantity (Order in Sets Only) | 200 (pcs.) |
|---------------------------------------|------------|
| Minimum Order Quantity                | 200 (pcs.) |

 "Minimum Quantity" means the number of units of each delivery or order. The quantity should be an integral multiple of the "minimum quantity". (Please note that the actual delivery quantity in a package may change sometimes.)



B Characteristics



### Example





# DHR Series **Caution**/Notice

# ■ ①Caution (Rating)

## 1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

| Voltage                   | DC Voltage | DC+AC Voltage | AC Voltage | Pulse Voltage (1) | Pulse Voltage (2) |
|---------------------------|------------|---------------|------------|-------------------|-------------------|
| Positional<br>Measurement | Vo-p       | Vo-p          | Vp-p       | Vp-p              | Vp-p              |

2. Operating Temperature and Self-generated Heat Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The applied voltage load should be such that the capacitor's selfgenerated heat is within 10°C at an atmosphere temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

#### ■ ① Caution (Storage and Operation Condition) Operating and storage environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture.

The capacitor is designed to be used in insulating media, such as epoxy resin, silicone oil, etc. There must be 3mm or more of insulating media for each direction of the capacitor. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 degrees centigrade and 15 to 85%. Use capacitors within 6 months.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.



# DHR Series ACaution/Notice

# Caution (Soldering and Mounting)

 Vibration and impact
 Do not expose a capacitor or its leads to excessive shock or vibration during use.

#### 2. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

#### ■ ①Caution (Handling)

Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use. FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

### Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions. Rinse bath capacity : Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

### ■ Notice (Rating)

Capacitance change of capacitor

- Class 1 capacitors
   Capacitance might change a little depending on the surrounding temperature or an applied voltage.
   Please contact us if you intend to use this product in a strict time constant circuit.
- 2. Class 2 and 3 capacitors Class 2 and 3 capacitors with temperature characteristics B, E and F have an aging

characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit. Please contact us if you need detailed information.



Soldering iron wattage: 50W max. Soldering time: 3.5 sec. max.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

