

Glucometer Analog AFE

PRODUCT DESCRIPTION

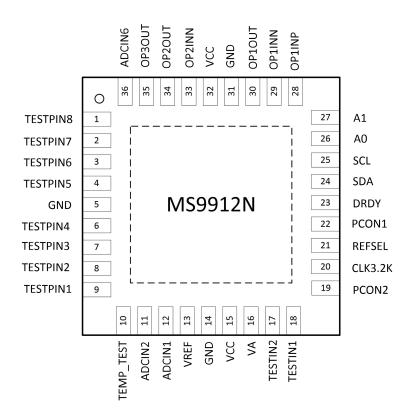
The MS9912N is a glucometer analog AFE measurement chip, which integrates high-performance ADC, high-precision operational amplifier, low-impedance switch, high-precision reference voltage generating circuit and glucose test AC signal circuit. It also integrates I²C communication protocol. These features make peripherals much less and users just need to operate and read data via interface, thus completing glucose acquisition.

The operating voltage ranges from 2.5V to 3.6V. The temperature range is from -40°C to +85°C. And the MS9912N is available in a QFN36 package.

- Maximum 16bit No Missing Codes
- ADC INL : 0.01%
- Integrated Oscillator
- Continuous Conversion and Single Conversion
- Integrated Low Offset Operational Amplifier
- Optional Internal and External References
- I²C Interface
- Low Power Dissipation : 1400uA
- QFN36 Package (Back Thermal Pad)

APPLICATIONS

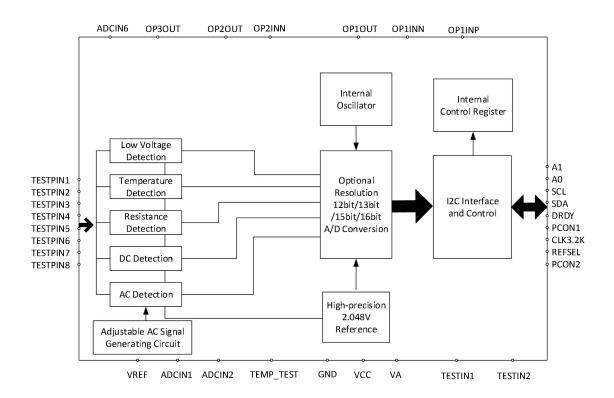
- Glucose Measurement
- Industry Measurement


PRODUCT SPECIFICATION

Part Number	Package	Marking
MS9912N	QFN36	MS9912N

PIN CONFIGURATION

PIN DESCRIPTION


Pin	Name	Туре	Description
1	TESTPIN8	ı	Test Terminal 8. By register setting and peripherals, the resistance
1	IESTRINO	l	value between TESTPIN8 and TESTPIN7 can be measured
			AC Small Signal Output and Resistor Test Terminal. By register
2	TESTPIN7	I/O	setting and peripherals, the resistance value between TESTPIN7 and
			TESTPIN2, TESTPIN4, TESTPIN6, TESTPIN8 can be measured
3	TESTPIN6	I	Test Terminal 6. By register setting and peripherals, the resistance
			value between TESTPIN6 and TESTPIN7 can be measured
4	TESTPIN5	I	Current Test Terminal 5. By register setting and peripherals,
			the terminal current can be measured
5	GND		Ground
6	TESTPIN4	I	Test Terminal 4. By register setting and peripherals, the resistance
	123111144	'	value between TESTPIN4 and TESTPIN7 can be measured
7	TESTPIN3	I	Test Terminal 3. By register setting and peripherals, the resistance
			value between TESTPIN2 and TESTPIN3 can be measured
8	TESTPIN2	I	Test Terminal 2. By register setting and peripherals, the resistance
			value between TESTPIN2 and TESTPIN3 can be measured
9	TESTPIN1	1	AC Test Terminal. By register setting and peripherals, the peak value
			of AC signal can be measured
10	TEMP_TEST	l	Temperature Test Input, external shunt resistor and thermistor
11	ADCIN2	l	ADC Input Terminal 2
12	ADCIN1	I	ADC Input Terminal 1
13	VREF	I/O	2.048V Reference Voltage Input/Output
14	GND		Ground
15	VCC	I/O	Internal Voltage Decouple Terminal, external 10uF capacitor
16	VA		Power Supply
		-	
17	TESTIN2	l	Internal Test Terminal 2
18	TESTIN1	l	Internal Test Terminal 1
19	PCON2	l	Internal Power Switch Control Terminal, Active Low
20	CLK3.2K	1	3.2kHz Square Wave Signal Input
24	DEECE		Reference Voltage Select Terminal.
21	REFSEL	l	Low selecting external reference; High selecting internal reference

Pin	Name	Type	Description
22	PCON1	0	Output low level after detecting test paper inserted
23	DRDY	0	Output pulse after one conversion
24	SDA	I/O	I2C SDA Signal
25	SCL	Ι	I2C Clock Signal
26	A0	ı	Address Select 0
27	A1	I	Address Select 1
28	OP1INP	I	Positive Input Terminal for Amplifier 1
29	OP1INN	_	Negative Input Terminal for Amplifier 1
30	OP1OUT	I/O	Output for Amplifier 1
31	GND		Ground
32	VCC	-	Power Decouple Pin, external capacitor
33	OP2INN	_	Negative Input Terminal for Amplifier 2
34	OP2OUT	I/O	Output for Amplifier 2
35	OP3OUT	0	Output for Amplifier 3, external detection capacitor
36	ADCIN6	0	Detection Output

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Any exceeding absolute maximum rating application causes permanent damage to device. Because long-time absolute operation state affects device reliability. Absolute ratings just conclude from a series of extreme tests. It doesn't represent chip can operate normally in these extreme conditions.

Parameter	Symbol	Range	Unit
Power Supply	VA	-0.3 ~ +6.0	V
Operating Temperature	TA	-40 ∼ + 85	°C
Storage Temperature	Tstg	-60 ∼ +1 50	°C
ESD	НВМ	>±3k	V

RECOMMENDED OPERATING CONDITIONS

			Range		
Parameter	Symbol	Min	Norm	Max	Unit
Power Supply	VA	2.5	3.3	3.6	V
Operating Temperature	TA	-40		85	°C

ELECTRICAL CHARACTERISTICS

Unless otherwise noted, TA=25°C, VA=3.3V.

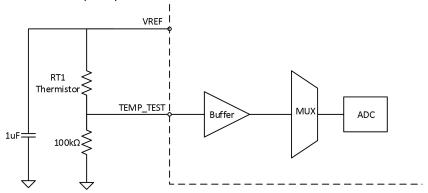
Parameter	Condition	Min	Тур	Max	Unit	
	Reference					
Reference Output Voltage		2.043	2.048	2.053	V	
	System Performanc	е				
	DR=00	12		12	Bits	
Resolution and	DR=01	13		13	Bits	
No Missing Codes	DR=10	15		15	Bits	
	DR=11	16		16	Bits	
	DR=00		480		SPS	
	DR=01		240		SPS	
Output Rate	DR=10		60		SPS	
	DR=11		30		SPS	
Integral Nonlinearity	DR=11, PGA=1, End Point		±0.004	±0.010	% of FSR	
	PGA=1		3.9	8	mV	
- CC	PGA=2		3.8	5	mV	
Offset Error	PGA=4		3.8	4.5	mV	
	PGA=8		3.5	4.5	mV	
	Amplifier Performan	ce	_			
	-0.3V <vcm<+3.5v< td=""><td></td><td>0.4</td><td>1</td><td></td></vcm<+3.5v<>		0.4	1		
Input Offset Voltage	-40°C≤TA≤85°C			1	mV	
	25°C		0.2	1	pА	
Input Bias Current	-40°C≤TA≤85°C			780	pA	
	25°C		0.1	0.5	pA	
Input Offset Current	-40°C≤TA≤85°C			50	pА	
	0V <vcm<+3.5v< td=""><td></td><td>75</td><td></td><td></td></vcm<+3.5v<>		75			
Common-mode Rejection Ratio	-40°C≤TA≤85°C	68			dB	
Large Signal Gain	RL=10kΩ, Vo=0.5V~2.8V	100	105		dB	
Input Offset Voltage Drift	-40°C≤TA≤85°C		5	10	μV/°C	
	Cdiff		1.9		pF	
Input Capacitance	Ccm		2.5		pF	
	IL=1mA	3.25	3.26			
	-40°C≤TA≤85°C	3.2			V	
Output High	IL=10mA		3.1			
	-40°C≤TA≤85°C	2.9			V	

Parameter	Condition	Min	Тур	Max	Unit
	IL=1mA		20	30	
	-40°C≤TA≤85°C			50	mV
Output Low	IL=10mA		190	275	
	-40°C≤TA≤85°C			335	mV
Output Short-circuit Current			±80		mA
Closed-loop Output Impedance	f=10kHZ, Av=1		15		Ω
	1.8V <vcm<+3.5v< td=""><td>67</td><td>90</td><td></td><td>dB</td></vcm<+3.5v<>	67	90		dB
Power Supply Rejection Ratio	-40°C≤TA≤85°C	64			dB
	Vo=VA/2		40		μΑ
Static Current	-40°C≤TA≤85°C			50	
	RL=100kΩ		0.4		MHz
Gain Bandwidth Product	RL=10kΩ		0.4		MHz
Slew Rate	RL=10kΩ		0.3		V/µs
	G=±1,2Vstep,				
Setup Time 0.1%	CL=20pF,RL=1kΩ		23		us
Phase Margin	RL=100kΩ,RL=10kΩ,CL=20pF		65		Deg
Peak-to-Peak Noise			2.3	3.5	uV
	f=1kHZ		26		nV/√Hz
Voltage Noise Density	f=10kHZ		24		nV/√Hz
Current Noise Density	f=1kHZ		0.05		pA/√Hz
	Digital input/Output				
Input High Level		0.7·VA		3.6	V
la sott sout soul		GND-		0.2:3/4	
Input Low Level		0.5		0.3×VA	V
Output Low Level	I _{OL} =3mA	GND		0.4	V
Input High Peak Current				10	uA
Input Low Peak Current		-10			uA
	Power Performance				
Operating Voltage	VA	2.5		3.6	V
Davies Cumple Comment	Off-state		0.05	2	uA
Power Supply Current	Operation state		1400	1600	uA

FUNCTION DESCRIPTION

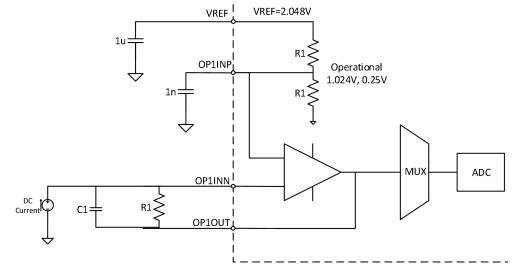
The MS9912N integrates high-performance ADC, high-precision operational amplifier, low-impedance switch, high-precision reference voltage generating circuit and glucose AC signal test circuit, and also integrates I²C communication protocol.

ADC


The analog-to-digital converter consists of a switched-capacitor Σ - Δ modulator and a digital filter. The modulator measures analog input voltage and outputs digital stream. The digital filter receives high-speed bit stream from the modulator and converts to digital code, which is a number proportional to input voltage.

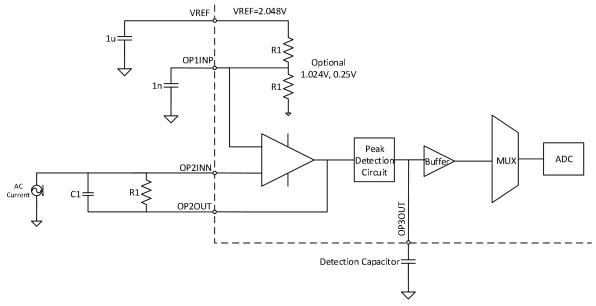
Low Voltage Detection

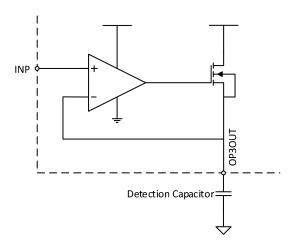
The MS9912N judges whether power supply is in low voltage state, by detecting the value after divided the internal power supply.


Temperature Detection

The voltage divided by peripheral thermistor is input to ADC test channel via internal buffer, so as to detect ambient temperature. The test principle is as follows:

DC Current Detection Channel


The MS9912N integrates DC detection channel. External current signal is converted by current-voltage and amplified, then input to ADC to convert as digital signal. The test principle is as follows:



AC Detection Channel

The MS9912N integrates AC detection channel. External current signal is converted by current-voltage and amplified, then input to ADC to convert as digital signal. The test principle is as follows:

Peak detection circuit is as follows:

Voltage Reference

The MS9912N integrates a 2.048V on-chip voltage reference, which is used as the voltage reference of amplifier and ADC. The reference voltage of amplifier can also be connected externally. ADC can only use internal voltage reference.

Output Code Calculation

The output code is a scaled value that is proportional to the voltage on analog input when input is in full-scale range. The output code is confined to a finite numbers range. And the range depends on the number of bits needed to represent the code, which of the ADC is decided by the data rate, as shown in Table 1.

Data Rate	Number Of Bits	Output Code
30SPS	16	32767
60SPS	15	16383
240SPS	13	4095
480SPS	12	2047

Table 1. Output Code

The format of ADC output code is binary two's complement.

Clock Oscillator

The MS9912N integrates clock oscillator, which drives the operation of the modulator and digital filter.

Operation Mode

The MS9912N includes two operation modes: continuous conversion or single conversion.

In continuous conversion mode, once a conversion has been completed, the MS9912N immediately places the result in the output register and begins another conversion.

In single conversion mode, the MS9912N waits until the ST/DRDY bit in the configuration register is set as 1. After the conversion is completed, the MS9912N places the result in the output register, resets the ST/DRDY bit to 0 and powers down. While a conversion is in progress, writing 1 to ST/DRDY has no effect.

When switched from continuous conversion mode to single conversion mode, the MS9912N completes the current conversion, resets the ST/DRDY bit to 0 and powers down.

Reset and Power-up

When the MS9912N powers up, it automatically performs one reset. The MS9912N sets all of the bits as default settings.

I²C Interface

The MS9912N interface adopts I²C communication protocol. I²C interface is a two-wire open drain output interface, which supports several devices share one bus with master. Devices on the I²C bus only drive the bus low by connecting them to ground, and they can't drive the bus high. Thus, the bus is pulled high by pull-up resistors.

Communication on the I^2C bus usually takes place between two devices, one acting as the master and the other as the slave. The MS9912N can only act as a slave device.

The timing diagram for the MS9912N I²C is shown in Figure 1. The related parameters for this diagram are given in Table 2.

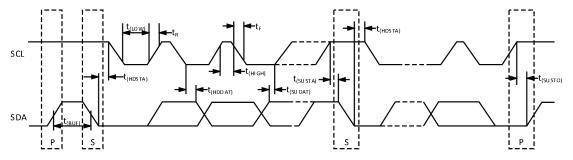


Figure 1. I²C Timing Diagram

Table 2. Related Parameters for Timing Diagram

		Fast-Spe	ed Mode	High-Spe	ed Mode	
	Parameter	Min	Max	Min	Max	Unit
t(SCLK)	SCLK Operating Frequency		0.4		3.4	MHz
^t (BUF)	Bus START to STOP Idle Time	600		160		ns
^t (HDSTA)	START Hold Time	600		160		ns
^t (SUSTA)	Repeated START Setup Time	600		160		ns
t(SUSTO)	STOP Setup Time	600		160		ns
t(HDDAT)	Data Hold Time	0		0		ns
^t (SUDAT)	Data Setup Time	100		10		ns
t(LOW)	SCLK Clock Low Level Period	1300		160		ns
^t (HIGH)	SCLK Clock High Level Period	600		60		ns
t _F	Clock/Data Fall Time		300		160	ns
t _R	Clock/Data Rise Time		300		160	ns

Serial Bus Address

In order to read from and write to the MS9912N, the master must first address to the slave through address bit. The slave address includes three address bits and one operation bit to indicate read or write operation. The MS9912N has two address pins, A0 and A1, setting I²C address. A0 and A1 could be set as logic ground, logic high or Float. Eight different addresses can be set through the two pins, as shown in table 3.

Table 3. MS9912N Address Pins and Slave Address

A0	A1	Slave Address							
0	0	000							
0	1	001							
0	Float	010							
1	0	100							
1	1	101							
1	Float	110							
Float	0	011							
Float	1	111							
Float	Float	Invalid							

Register

The MS9912N registers can are accessible via its I²C interface. The output register contains the result of the last conversion. The configuration register allows the user to change the operation mode of the MS9912N and query device status.

Output Register

The 16-bit output register contains the result of the last conversion in binary two's complement format. After reset or power-up, the output register is cleared and remains zero until the first conversion is completed. The output register format is shown in Table 4.

Table 4. Output Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Analog-to-Digital Conversion Configuration (Address 90hRegister)

User can use 8-bit configuration register to control the operation mode, data rate and PGA setting. The configuration register format is shown in Table 5. The default setting is 80_H.

Table 5. ADC Configuration Register

Bit	7	6	5	4	3	2	1	0
Name	ST/DRDY	-	-	SC	DR1	DR0	PGA1	PGA0
Default	1	0	0	0	0	0	0	0

Bit 7: ST/DRDY

ST/DRDY bit indicates the data is written to or read from.

In single conversion mode, writing 1 to the ST/DRDY bit indicates starting a conversion, and writing 0 has no effect. In continuous conversion mode, the MS9912N ignores the value written to ST/DRDY. When performing read operation, ST/DRDY indicates whether the data in the output register is new data. If ST/DRDY is 0, the data read from the output register has not been read before. If ST/DRDY is 1, the data has been read before.

In continuous conversion mode, use ST/DRDY to determine when conversion data is ready. If ST/DRDY is 1, the data in the output register has already been read. If ST/DRDY is 0, the data in the output register has not yet been read.

In single conversion mode, use ST/DRDY to determine whether a conversion has completed. If ST/DRDY is 1, the conversion is in process. if it is 0, conversion is completed.

Bit 4: SC

SC bit controls whether the MS9912N operates in continuous or single conversion mode. When SC is 1, the MS9912N operates in single conversion mode. When SC is 0, it operates in continuous conversion mode. The default setting is 0.

Bit 3-2: DR

Bit 3 and 2 control the data rate of the MS9912N, as shown in Table 6.

Table 6. DR Bit

DR1	DR0	Data Rate	Resolution
01	01	480SPS	12Bit
0	1	240SPS	13Bit
1	0	60SPS	15Bit
1	1	30SPS	16Bit

Note 1: Default setting

Bit 1-0: PGA

Bit 1 and 0 control the gain setting of the MS9912N, as shown in Table 7.

Table 7. PGA Bit

PGA1	PGA0	Gain
01	01	1
0	1	2
1	0	4
1	1	8

Note 1: Default setting

Test Control Register (Default 0)

	bit7	1: Turn on switch from 3.2kHz AC signal to TESTPIN5 (test AC impedance between TESTPIN5 and TESTPIN1); 0: Turn off switch from 3.2kHz AC signal to TESTPIN5
	bit6	1: Turn on switch from ADCIN1 to TESTPIN3 (test resistance between TESTPIN2 and TESTPIN3); 0: Turn off switch from ADCIN1 to TESTPIN3
Address A0 Register	bit5	1: Turn on switch from TESTPIN8 to GND (test resistance between TESTPIN8 and TESTPIN7); 0: Turn off switch from TESTPIN8 to GND
	bit4	1: Turn on switch from TESTPIN6 to GND (test resistance between TESTPIN6 and TESTPIN7); 0: Turn off switch from TESTPIN6 to GND
	bit3	O: Turn on switch from TESTPIN3 to GND (detect test paper whether is inserted) 1: Turn off switch from TESTPIN3 to GND
	bit2	1: Turn on switch from TESTPIN5 to OP1INN (test paper DC test); 0: Turn off switch from TESTPIN5 to OP1INN

	1	
		1: Turn on switch from TESTPIN4 to GND
	bit1	(test resistance between TESTPIN4 to TESTPIN7);
		0: Turn off switch from TESTPIN4 to GND
		1: Turn on switch from 3.2KHz AC signal to TESTPIN7
	bit0	(test AC impedance between TESTPIN7 to TESTPIN1);
		0: Turn off switch from 3.2KHz AC signal to TESTPIN7
	bit7	1: Turn on switch from ADCIN2 to TESTPIN7
		(test resistance between TESTPIN2,4,6,8 to TESTPIN7);
		0: Turn off switch from ADCIN2 to TESTPIN7
		1: Turn on switch from TESTPIN2 to GND
	bit6	(test resistance between TESTPIN2 to TESTPIN7);
		0: Turn off switch from TESTPIN2 to GND
		0: Turn on switch from TESTPIN2 to TOMCU
	bit5	(test test paper whether is inserted) (default);
		1: Turn off switch from TESTPIN2 to TOMCU
Address B0 Register		1: Turn on switch from TESTPIN1 to OP2INN (test paper AC test);
	bit4	0: Turn off switch from TESTPIN1 to OP2INN
		1: OP1INN input terminal connects 20kΩ resistor to GND
	bit3	(test paper DC test);
		0: OP1INN input terminal disconnects 20kΩ resistor to GND
	hi+2	1: VREF 1.024V connects 100kΩ resistor to GND (amp bias 0.25V);
	bit2	0: VREF 1.024V disconnects $100k\Omega$ resistor to GND (amp bias 1.024V)
	1.04	1: OP2INN input terminal connects 240kΩ resistor to GND (backup);
	bit1	0: OP2INN input terminal disconnects 240kΩ resistor to GND
	bit0	Set 0 at temperature measurement; Must set 1 in other modes
	bit7	1: Turn on discharge channel of peak detection circuit
		(discharge resistance is about $1M\Omega$);
Address CO Register		0: Turn off discharge channel of peak detection circuit
		1: Turn on switch from TESTPIN7 to GND
	bit6	(When test the resistance between TESTPIN 2,4,6,8 and 7);
		0: Turn off switch from TESTPIN7 to GND
	bit5	ADC Input Select:
		(1) 000: Detect power supply;
		(2) 001: Detect reference voltage 2.048V;
	bit4	(3) 010: Detect temperature;
		(4) 011: Detect the resistance between TESTPIN2 and TESTPIN3
		1.7 5000 0.0 . 50.000.00 50.000 1 1 2011 1112 0110 1 2011 1110

bit3	(5)100: Detect the resistances between TESTPIN2,4,6,8 and TESTPIN7;(6) 101: Test paper DC detect input;(7) 110: Backup;(8) 111: Test paper AC detect input
bit2	 1: Turn on discharge channel of peak detection circuit (discharge resistance is about 750Ω); 0: Turn off discharge channel of peak detection circuit
bit1	
bit0	

Reading from the MS9912N

To read the contents in the output register and configuration register from the MS9912N, first address the MS9912N, then read three bytes from the device. The first two bytes are the output register's contents, and the third is the configuration register's contents. It is allowed to read less than three bytes during read operation.

The typical timing diagram of the MS9912N read operation is shown in Figure 2.

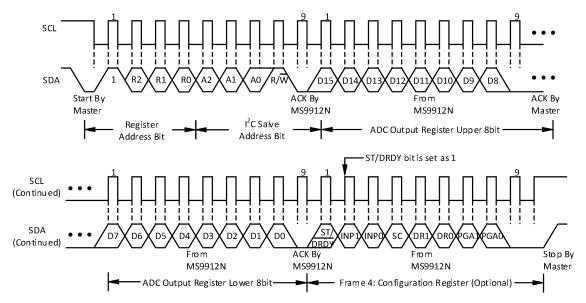


Figure 2. Timing Diagram of the MS9912N Read Operation

Writing to the MS9912N

To write to the configuration register, first address the MS9912N. Note that output register can't be written. Writing more than one byte to the MS9912N has no effect. The MS9912N will ignore any input bytes following the first byte. The typical timing diagram of the MS9912N write operation is shown in Figure 3.

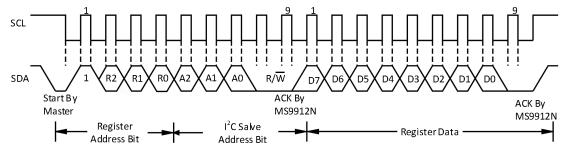


Figure 3. Timing Diagram of the MS9912N Write Operation

Glucose Test Process

The following is the glucose test flowchart:

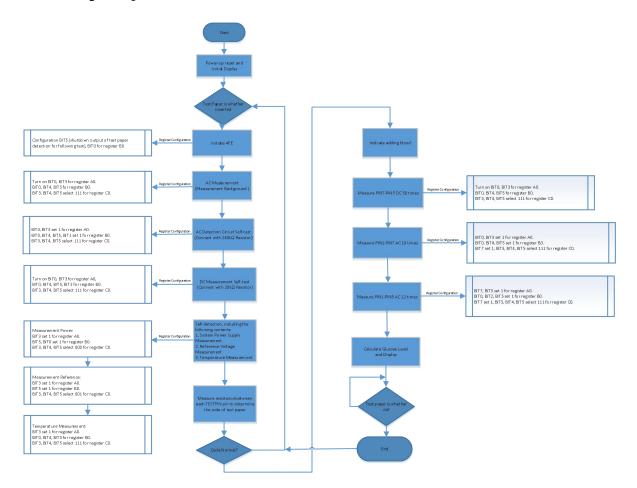
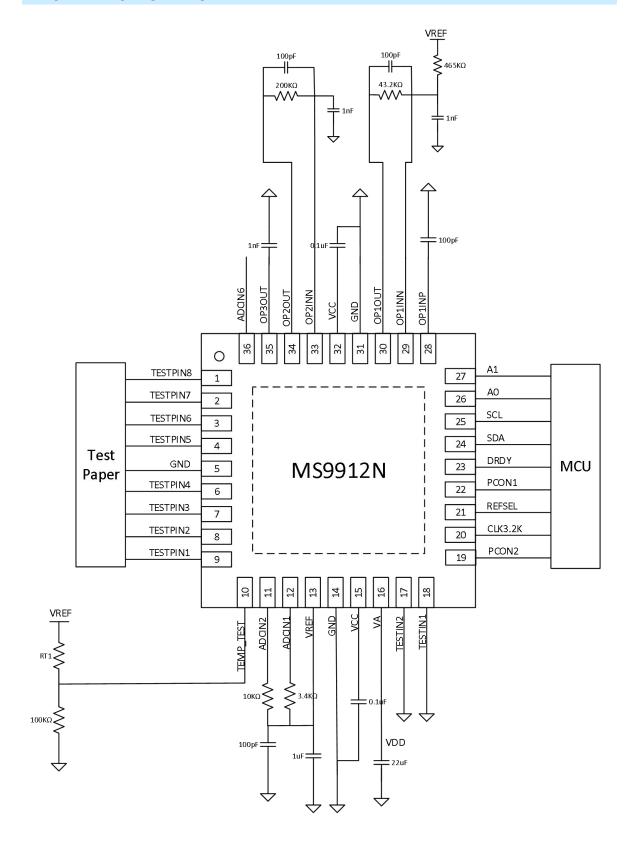
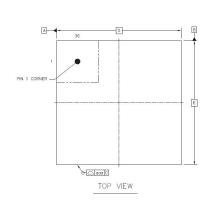
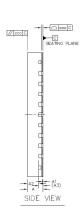
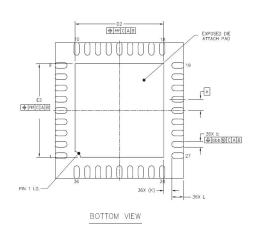



Figure 4. Glucose Test Flowchart


TYPICAL APPLICATION DIAGRAM





PACKAGE OUTLINE DIMENSIONS

QFN36

	D	Dimensions in Millimeters		
Symbol	Min	Тур	Max	
Α	0.7	0.75	0.8	
A1	0.00	0.02	0.05	
A2		0.55		
А3		0.203REF		
b	0.2	0.25	0.3	
D	6BSC			
E	6BSC			
е		0.5BSC		
D2	4.05	4.15	4.25	
E2	4.05	4.15	4.25	
L	0.45	0.55	0.65	
k	0.375REF			
aaa	0.1			
ССС	0.1			
eee	0.08			
bbb	0.1			
fff	0.1			

MARKING and PACKAGING SPECIFICATIONS

1. Marking Drawing Description

Product Name : MS9912N Product Code : XXXXXXX

2. Marking Drawing Demand

Laser printing, contents in the middle, font type Arial.

3. Packaging Specifications

Device	Package	Piece/Reel	Reel/Box	Piece/Box	Box/Carton	Piece/Carton
MS9912N	QFN36	2000	1	2000	8	16000

STATEMENT

- All Revision Rights of Datasheets Reserved for Ruimeng. Don't release additional notice.
 Customer should get latest version information and verify the integrity before placing order.
- When using Ruimeng products to design and produce, purchaser has the responsibility to observe safety standard and adopt corresponding precautions, in order to avoid personal injury and property loss caused by potential failure risk.
- The process of improving product is endless. And our company would sincerely provide more excellent product for customer.

MOS CIRCUIT OPERATION PRECAUTIONS

Static electricity can be generated in many places. The following precautions can be taken to effectively prevent the damage of MOS circuit caused by electrostatic discharge:

- 1. The operator shall ground through the anti-static wristband.
- 2. The equipment shell must be grounded.
- 3. The tools used in the assembly process must be grounded.
- 4. Must use conductor packaging or anti-static materials packaging or transportation.

+86-571-89966911

Rm701, No.9 Building, No. 1 WeiYe Road, Puyan Street, Binjiang District, Hangzhou, Zhejiang

VERSION: V1.3

http://www.relmon.com