
КР1533ИР22, КФ1533ИР22, ЭКР1533ИР22, ЭКФ1533ИР22

Микросхемы представляют собой восьмиразрядный регистр на триггерах с защелкой с тремя состояниями на выходе и предназначены для управления большой емкостной или низкоомной нагрузками. Корпус типа 2140.20-8, масса не более 2,6 г и 2140.20-В.

Назначение выводов: 1 - вход разрешения снятия состояния высокого импеданса \overline{EZ} ; 2 - выход Q0; 3 - вход информационный D0; 4 - вход информационный D1; 5 - выход Q1; 6 - выход Q2; 7 - вход информационный D2; 8 - вход информационный D3; 9 - выход Q3; 10 - общий; 11 - вход тактовый C; 12 - выход Q4; 13 - вход информационный D4; 14 - вход информационный D5; 15 - выход Q5; 16 - выход Q6; 17 - вход информационный D6; 18 - вход информационный D7; 19 - выход Q7; 20 - напряжение питания.

Условное графическое обозначение КР1533ИР22

Таблица истинности

Вход			Выход
\overline{EZ}	С	D	О
0	1	1	1
0	1	0	0
0	0	X	Q0
1	Χ	Χ	Z

Электрические параметры

10					
- при I ⁰ _{вых} = 12 мА					
- при I ⁰ _{вых} = 24 мА≤ 0,5 В					
Выходное напряжение высокого уровня:					
- при I ¹ _{вых} = -2,6 мА	≥ 2,4 B				
- при I ¹ _{вых} = -0,4 мА	≥ 2,5 B				
Прямое падение напряжения на антизвонном диоде≤ -1,5 В					
Ток потребления при низком уровне выходного					
напряжения при U _п = 5,5 В	≤ 25 mA				
Ток потребления при высоком уровне выходного					
напряжения при U _п = 5,5 В≤ 16 мА					
Ток потребления в состоянии «выключено»					
при U _п = 5,5 B; U _{вых} = 2,7 В	≤ 27 mA				
Входной ток низкого уровня	≤ -0,1 mA				
Входной ток высокого уровня	≤ 20 мкA				
Входной пробивной ток					
Выходной ток	-30 -112 мА				
Выходной ток высокого уровня в состоянии					
«выключено»	≤ 20 мкА				
Выходной ток низкого уровня в состоянии					
«выключено»	≤ -20 мкА				
Время задержки распространения сигнала при включени	и:				
- по входу D					
- по входу C					
Время задержки распространения сигнала при выключении:					
- по входу D					
- по входу С					
Время задержки распространения сигнала при переходе					
из состояния «выключено» в состояние высокого уровня≤ 20 нс					
Время задержки распространения сигнала при переходе	2 20 110				
из состояния высокого уровня в состояние «выключено»	< 40 HC				
Время задержки распространения сигнала при переходе	2 10 110				
из состояния «выключено» в состояние низкого уровня	< 18 HC				
Время задержки распространения сигнала при переходе					
из состояния низкого уровня в состояние «выключено»					
Емкость входа					
Емкость выхода					
EMICOTO DDINOAU	⊒ / ПΨ				
Предельно допустимые режимы эксплуатации					
Напряжение питания	4.55.5 B				
Входное напряжение низкого уровня					
Pro succe use provide a propose vectors	2 E E D				

Входное напряжение высокого уровня2....2...5,5 В

Максимальное напряжение, подаваемое на выход .	5,5 В
Температура окружающей среды	10+70 °C

Общие рекомендации по применению

Безотказность работы микросхем в аппаратуре достигается: правильным выбором условий эксплуатации и электрических режимов микросхем; соблюдением последовательности монтажа микросхем в аппаратуре, исключающих тепловые, электрические и механические повреждения микросхем.

Лужение производить в следующих режимах: температура расплавленного припоя не более 260 °C; время погружения не более 2 с; расстояние от корпуса до зеркала припоя (по длине вывода) не менее 1 мм; допустимое количество погружений не более 2; интервал между двумя погружениями не менее 5 мин.

Лужение и пайка должны производиться предпочтительно припоем ПОС61 по ГОСТ 21930-76, флюсом, состоящим из 25% по массе канифоли и 75% по массе изопропилового или этилового спирта.

Установку микросхем на плату производить с зазором, который обеспечивается конструкцией выводов.

Пайку микросхем на печатную плату одножальным паяльником производить по следующему режиму: температура жала паяльника не более 270 °C; время касания каждого вывода не более 3 с; расстояние от корпуса до места пайки (по длине вывода) не менее 1 мм; интервал между пайками соседних выводов не менее 3 с.

Жало паяльника должно быть заземлено.

Пайку микросхем на печатную плату групповым способом производить по следующему режиму: температура жала группового паяльника не более 265 °C; время воздействия этой температуры (одновременно на все выводы) не более 3 с; расстояние от корпуса до места пайки (по длине вывода) не менее 1 мм; интервал между двумя повторными пайками выводов не менее 5 мин.

Операцию очистки печатных плат с микросхемами от паяльных флюсов производить тампоном или кистью, смоченными спирто-бензиновой смесью в пропорции 1:1, ацетоном, спиртом или трихлорэтиленом, исключив при этом механическое повреждение выводов.

Сушку печатных плат с микросхемами после очистки производить при температуре не выше $60\,^{\circ}\text{C}$.

Для влагозащиты плат с микросхемами применять лак УР-231 по ТУ 6-10-863-84 или ЭП-730 по ГОСТ 20924-81. Оптимальная толщина покрытия лаком УР231 должна быть 35...55 мкм, лаком ЭП-730 - 35...100 мкм.

Количество слоев 3.

Рекомендуемая температура сушки (полимеризации) лака 65 ± 5 °C. Свободные входы необходимо подключать к источнику постоянного

напряжения $5 \ B \pm 10\%$, к источнику выходного напряжения высокого уровня или заземлять.

Допустимое значение электростатического потенциала 200 В.